

See discussions, stats, and author profiles for this publication at: <https://www.researchgate.net/publication/293808595>

Fire indirectly benefits fitness in two invasive species

Article in *Biological Invasions* · May 2016

DOI: 10.1007/s10530-016-1064-y

CITATIONS
25

READS
409

3 authors, including:

Raelene Crandall

University of Florida

65 PUBLICATIONS 1,050 CITATIONS

[SEE PROFILE](#)

Tiffany Knight

The National Tropical Botanical Garden

250 PUBLICATIONS 13,564 CITATIONS

[SEE PROFILE](#)

Fire indirectly benefits fitness in two invasive species

Shannon G. Guthrie · Raelene M. Crandall ·
Tiffany M. Knight

Received: 6 July 2015 / Accepted: 24 January 2016
© Springer International Publishing Switzerland 2016

Abstract Ecosystems perturbed from their natural disturbance regimes are more vulnerable to establishment and dominance of exotic plant species. Restoration efforts that reintroduce fire have achieved mixed success in reducing the abundance of exotic plants. The responses of many native species to fire are well known; fire-adapted species respond directly (heat and smoke cue germination) and indirectly (post-fire environment benefits seedling survivorship and growth) to fire. However, the direct and indirect effects of fire are unknown for most exotic plant species. We tested the direct and indirect effects of fire on two exotic invaders of Asian origin, *Ailanthus altissima* and *Lonicera maackii*, in North American woodlands. To quantify the direct effects of fire, we

compared germination rates of seeds exposed to varying levels of heat and smoke in a laboratory and placed at different soil depths during a prescribed fire in the field. We examined the indirect effects of fire by comparing seedling recruitment in burned and unburned woodland plots. Results indicate that neither *A. altissima* nor *L. maackii* have germination cues associated with fire. However, both species have greater seedling recruitment in burned as compared to unburned areas in the field. Although seeds of these invasive species are not specifically adapted to fire, they still benefit from post-fire environments and pose a challenge to restoration of fire-maintained ecosystems. Future studies using our approach will allow land managers to better predict how communities will respond to restoration efforts and to understand variability observed in past restoration projects.

S. G. Guthrie · R. M. Crandall (✉) · T. M. Knight
Department of Biology, Washington University in St.
Louis, St. Louis, MO, USA
e-mail: raecrandall@gmail.com

T. M. Knight
Institute of Biology/Geobotany and Botanical Garden,
Martin Luther University, Halle-Wittenberg, Halle,
Germany

T. M. Knight
Department of Community Ecology, UFZ, Helmholtz
Centre for Environmental Research, Halle, Germany

T. M. Knight
German Centre for Integrative Biodiversity Research
(iDiv), Halle-Jena-Leipzig, Germany

Keywords *Ailanthus altissima* · Fire · Germination · Heat · Invasive species · *Lonicera maackii* · Seedling recruitment · Smoke

Introduction

Invasive species are one of the most pervasive threats to natural ecosystems, displacing native species and altering ecosystem structure and function (Brooks et al. 2005; Vilà et al. 2011; Powell et al. 2013; Simberloff et al. 2013; Jeschke et al. 2014).

Ecosystems that are perturbed from their natural disturbance regimes are particularly vulnerable to the invasion of and subsequent dominance by exotic plant species (Parepa et al. 2013; MacDougall et al. 2013; Murphy and Romanuk 2014). In woodlands of North America, the first step in restoring these invaded habitats is often to reintroduce the historic fire regime (Pyke et al. 2010; Ryan et al. 2013; Stambaugh et al. 2015). The success of restoration using fire is varied; sometimes reintroducing fire reduces exotic abundances and favors natives, and sometimes it does not (Pyke et al. 2010). Restoration projects typically have incomplete knowledge of the effects of fire on exotic plants and the variation observed in the success of these projects might depend on whether exotic species are adapted to fire.

Species that are adapted to the direct and indirect effects of fire, particularly in their seed ecology, will benefit from a fire regime (Pausas and Keeley 2014). Fire directly influences seeds of fire-adapted species by cueing germination via physical scarification, heat shock, and/or chemical stimulation by smoke (Brown et al. 2003; Flematti et al. 2004; Ooi et al. 2014). Additionally, seeds and seedlings may experience positive, indirect effects of fire, such as increased light attenuation at the soil surface, release from competition, increased nutrient cycling, and reduced seed herbivory (Tyler 1995; Keeley and Fotheringham 2000). Often the direct and indirect effects of fire work in concert to enhance seedling recruitment of fire-adapted species.

Fire has been shown to increase germination and seedling recruitment in a number of native species (Moreira et al. 2010; Keeley et al. 2011; Bargmann et al. 2014). However, the literature largely lacks studies combining information on both the direct and indirect effects of fire on exotic invaders (but see Vermeire and Rinella 2009; Emery et al. 2011). It is possible that the inconsistent success of using fire as a restoration tool in invaded habitats is due to variation in the responses of exotic species to different effects of fire. For example, population growth of the invasive grass, *Microstegium vimineum*, increases greatly after fires even though its seeds do not directly benefit from heat and smoke (Emery et al. 2011; Flory et al. 2015). This invasive increases fire intensity, which in turn inhibits the survival and recruitment of coexisting native species, thus providing an open, competition-free environment that indirectly benefits its own germination and seedling establishment (Emery et al.

2011; Wagner and Fraterrigo 2015). Projects aimed at restoring invaded habitats will increase their success rate if the adaptations of invaders to both the direct and indirect effects are considered prior to using fire for restoration.

Most studies examining the direct and indirect effects of fire on the fitness of plant species focus on early life stage vital rates, such as germination and seedling establishment rates, and assume that the effects of fire on these vital rates will be important to plant population dynamics. This assumption might be reasonable for many plant species for two reasons. First, the population growth rates of plants are sensitive to early life stage vital rates in most short-lived plant species (Silvertown et al. 1993), and in long lived plants that have rapid population growth rates, such as invasive perennials (Ramula et al. 2008; Schutzenhofer et al. 2009; Burns et al. 2013). Second, even vital rates with low sensitivity can alter plant population dynamics if those vital rates are changed dramatically enough by the environmental conditions (e.g., Pardini et al. 2015). Fire can often have dramatic effects on the germination and seedling establishment rates of plants.

This study aims to determine the direct, indirect, and net effects of fire on the germination and seedling recruitment of two woody species, *Lonicera maackii* and *Ailanthus altissima*, both of which are common invaders of mesic forests in North America (Luken and Thieret 1995; Kasson et al. 2013) and have rapidly growing populations at our study site (Crandall and Knight, personal observations). Specifically, we evaluated (1) germination rates after exposure to heat and smoke in the laboratory, (2) germination rates of seeds burned using a prescribed fire after burying them at different soil depths, and (3) seedling recruitment in burned and unburned field plots. A more complete understanding of the net effects of fire, both direct and indirect combined, on the seeds of exotic species should help elucidate the role of fire as a restoration tool in invaded ecosystems.

Materials and methods

Site description

The field studies were conducted at the Tyson Research Center, which is owned and managed by

Washington University in St. Louis (38.526578 N, -90.560322 W). The site is an oak-hickory woodland ecosystem within the Missouri Ozarks with a history of invasion by exotic species. Lightning-ignited fires occur during the summer when hot, humid conditions prevail and droughts are common, but most prescribed fires are lit during the dormant season between snow events when conditions are cold and dry (Sutherland 1997). Prior to colonial settlement in the 1840s, Native American groups set widespread fires throughout large portions of the Ozarks region every 4–6 years to maintain savanna-like conditions (Cutter and Guyette 1994; Hart and Buchanan 2012; Stambaugh et al. 2015). The prevalence of wildland fire in today's Ozarks has been greatly reduced, though prescribed burns have been sporadically reintroduced to the region as a restoration technique.

Fires in mesic, deciduous forests of North America where our sites are located are not as intense as those in other fire-dominated habitats (i.e., prairies, U.S. Western forests, Mediterranean Chaparral). Fuels are typically leaf litter and woody debris, which do not burn as hot or fast as fine fuels, such as dead grasses or pine needles. Fires move slowly through the understory and only heat the soil surface for extended periods of time in localized areas with high concentrations of woody debris (Hodgkinson and Oxley 1990; Cole et al. 1992). Average soil surface temperatures during prescribed fires in oak-hickory forests of the Midwestern U.S. have been reported between 157 and 210 °C depending on weather conditions (Boerner 2000), which is significantly lower than those reported for other systems (Gibson et al. 1990). Because fires are of lower intensity in mesic, deciduous forests, it is possible that fewer native species are adapted to the direct effects of fire compared to other habitats with more intense fires (but see Emery et al. 2011). Instead, these species might benefit more from a post-fire environment with less competition, increased soil nutrients, and greater light availability (Boerner et al. 2004).

Study species

Both *L. maackii* (Amur honeysuckle) and *A. altissima* (tree-of-heaven) are management concerns in North American forests. *Lonicera maackii* is an upright, deciduous shrub with bird-dispersed fruits native to northeast China, Korea, eastern Siberia, and Japan that was introduced to North America in 1896 (Ingold and

Craycraft 1983; Luken and Thieret 1995, 1996). *Ailanthus altissima* is a deciduous tree producing many wind-borne seeds also originating from China and spreading to North America in the eighteenth century (Hu 1979). While fires are infrequent across much of Asia (Page et al. 2009), some habitats (e.g., lowland tropical areas) have a long history of frequent natural and human-induced fires (Stott et al. 1990). Because *L. maackii* and *A. altissima* have wide distributions across Asia, it is likely that they have at least periodically experienced fire during their evolutionary history. Both *L. maackii* and *A. altissima* were initially introduced to North America as ornamental plants, but have spread beyond their initial distribution and are classified as invasive species across most of their invaded range (Luken and Thieret 1995). Both species thrive in open and forest habitats with a history of human disturbance (Knapp and Canham 2000). *Lonicera maackii* has plastic stem growth that allows it to utilize both shady and high light environments (Luken et al. 1995). Further, *L. maackii* experiences less herbivory than many native woody species, promoting its competitive ability (Trisel and Gorchov 1994). *Ailanthus altissima*, though not shade tolerant like *L. maackii*, nevertheless has extremely rapid growth that allows it to take advantage of canopy gaps (Knapp and Canham 2000).

Although the effects of fire on the seeds of these species have not been studied, their germination requirements are known. *Lonicera maackii* seedlings will germinate and establish in a wide range of light conditions, allowing the species to establish in forest edges and interiors. With a minimal delay between dispersal and germination, *L. maackii* lacks a persistent seed bank (Luken and Goessling 1995). Conversely, *A. altissima* has a persistent seed bank, is shade-intolerant, and requires high light for germination. In closed canopy conditions seedlings may germinate but are unlikely to establish (Knapp and Canham 2000). Because both of these species have high population growth rates when colonizing new areas (Crandall and Knight, personal observations), it is likely that germination and seedling recruitment are important vital rates (see Schutzenhofer et al. 2009).

Experimental methods

A laboratory experiment was used to test the direct effects of heat and smoke on the germination of

L. maackii and *A. altissima*. Seeds of each species were collected from multiple sites at the Tyson Research Center during the fall of 2012. Seeds of *L. maackii* were immediately removed from fruits, washed with tap water, and dried at room temperature before being placed in cold storage. Seeds of *A. altissima* were collected and placed immediately into cold storage. Seeds remained in cold storage at 4 °C for at least 3 months for cold stratification.

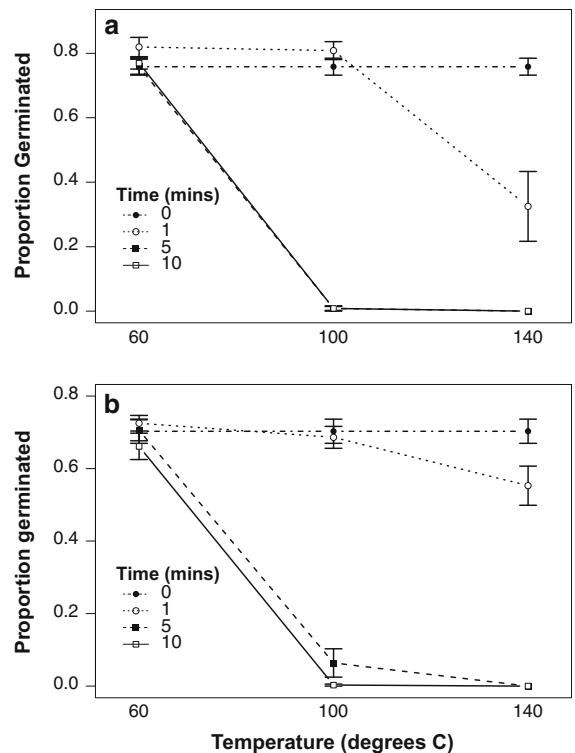
Seeds were subjected to different levels of heat and smoke using a protocol similar to other studies (see Keeley and Fotheringham 1998; Lindon and Menges 2008). Thus our results should be comparable to results from native species. Three heat treatments, 60, 100 and 140 °C, were used to simulate the temperature conditions seeds would experience in low intensity, moderate intensity, and high intensity fire (e.g., Cushwa et al. 1968; Mott et al. 1982; Loucks et al. 2008). These three heat treatments were applied in a drying oven for zero (controls), 1, 5 or 10 min, again designed to simulate the duration of time seeds might experience fire-associated temperatures during slow-moving understory fires with the longer temperatures representing microsites with greater woody debris (e.g., Herranz et al. 1998). The heat treatments were further delineated by the application of either wet or dry heat. As the heat treatments were applied and the seeds oven-heated, wet heat was created by filling the oven with steam, simulating fire conditions in moist woodland areas (e.g., Martin et al. 1975). Additionally, half of the seeds were also subjected to smoke for a period of 5 min to test germination cues initiated by chemicals in smoke, such as butenolid (Dixon et al. 1995; Nelson et al. 2009; Flematti et al. 2001, 2004; Ooi et al. 2014). The smoke treatment was applied by placing seeds in an aquarium filled with smoking leaf litter collected from Tyson Research Center. Each treatment combination was tested on 30 seeds and replicated three times. Once treatments were applied, the seeds were germinated in a greenhouse and seedlings were counted until no seeds germinated for a period of 2 weeks. The proportions of seeds that germinated were compared between treatments using ANOVAs and Tukey pairwise comparisons. Smoke and wet/dry heat did not have a significant effect on germination within each heat temperature and time combination, thus they were combined for final analyses.

A field experiment was used to assess the effects of seed burial depth on the germination of the two study

species in burned and unburned plots. For the first field experiment, 30 seeds of each species were placed in metal mesh packets and buried at depths of 0 (i.e., soil surface), 3 and 6 cm in three different burn units. Once buried, seeds were either unburned or subjected to a dormant season prescribed burn. Microsite conditions varied between plots with different invasive species, which affected the proportion of area burned. The average area burned by site for *A. altissima* was $99.2 \pm 2.9\%$ and for *L. maackii* was $85.1 \pm 18.5\%$. Following the burns, the three replicates were sowed in a greenhouse and monitored until no seeds germinated for a period of 2 weeks. The effects of seed depth and fire presence on the proportion of seeds that germinated were assessed using ANOVAs and Tukey pairwise comparisons.

A second field experiment surveyed the indirect effects of prescribed fire on seedling recruitment. Plots of 4 m^2 were systematically selected such that each plot had approximately the same density. *Ailanthus altissima* plots had approximately ten non-reproductive stems and were situated near a large, reproducing adult to increase the probability seeds would disperse into them. *Lonicera maackii* plots had 4–6 reproducing adults per plot. Seedling density was sampled before and after fire; *A. altissima* plots were sampled in June 2012 and 2013, and *L. maackii* plots were sampled in July 2012 and 2013. There were a total of 48 plots for each species distributed between three sites with 24 of the plots burned. Seedling response was determined by subtracting the number of seedlings in each plot after treatments (2013 survey) from the number present pre-treatment (2012 survey). Data were normalized using a square root transformation and then analyzed using a *t* test. All data in this study were analyzed using R Statistics (R core team 2014).

Both of the field experiments had similar fire conditions, including fuel loads. The burn day, February 15 of 2013, was proceeded by at least 5 days with no precipitation. On the day of the burns, relative humidity was between 40 and 50 and wind speeds did not exceed 16 kph. All fires were lit with a head fire after establishing a black line with a backing fire. Thus, the seedling plots and buried seed packets experienced a slow-moving head fire characteristic of mesic, deciduous forests. Fuel loads did not vary significantly between plots within species, so fire heterogeneity likely resulted from subtle differences in fuel moisture and topography. Fuels consisted


primarily of downed twigs and leaves of the invasive species in our study, *Quercus* spp., *Carya* spp., *Fraxinus* spp., and *Acer* spp. Understory species were sparse but when present consisted of *Ageratina altissima*, *Galium circaeans*, *Muhlenbergia sobolifera*, *Parthenocissus quinquefolia*, *Sanicula canadensis*, and woody seedlings. Neither *A. altissima* nor *L. maackii* are known to alter fire intensity or resident time.

Results

Simulated direct effects of fire alter germination in both *A. altissima* and *L. maackii*. Smoke and whether the heat was wet or dry had no affect on germination and thus were excluded from graphs and analyses ($P > 0.05$ for all comparisons). There were main and interactive effects of heat temperature and duration (all P 's < 0.001) on germination of both *A. altissima* and *L. maackii* (Fig. 1a, b). Temperatures of 60 °C had no significant effect on germination, with seeds at all heat times showing similar rates of germination ($P > 0.8$ for both species). However, temperatures of 100 °C significantly decreased germination for seeds exposed to heat for 5 or 10 min, but not for seeds exposed for only 1 min. At 140 °C, germination was significantly inhibited after as little as 1 min of heat, and no seeds germinated after exposure for more than 1 min.

Burning and burying seeds had different effects on germination of *A. altissima* and *L. maackii*. There were no main (burn: $P = 0.275$; burial depth: $P = 0.571$) or interaction ($P = 0.086$) effects of burning and burying seeds on germination of *L. maackii* ($P > 0.05$ for all comparisons; Fig. 2a), but two of the three replicates in the burned and soil surface (0 cm) treatment had very low germination. This decrease in germination was likely not significant as result of variation in natural fire temperatures. There was a significant interaction between burning and seed burial for *A. altissima* ($P = 0.014$; Fig. 2b). Burial depth had no significant effect on germination where fire was absent ($P = 0.108$). In contrast, the presence of fire significantly decreased germination at a depth of 0 cm ($P = 0.024$), while depths of 3 and 6 cm caused no change in germination as compared to unburned seeds buried at the same depths.

The survey of seedlings in the field before and after prescribed burns revealed that fire indirectly increase

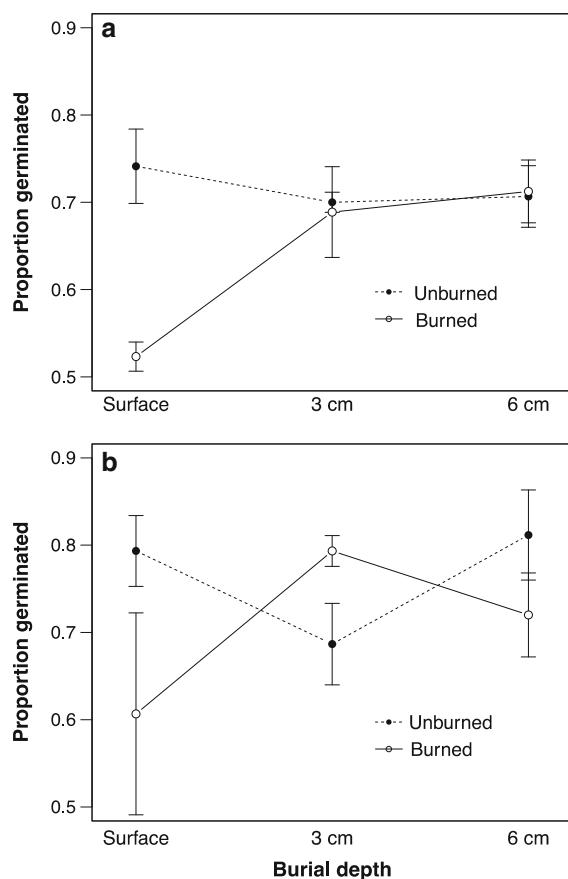


Fig. 1 Proportion of seeds germinated for **a** *A. altissima* and **b** *L. maackii* after exposure to heat treatments for varying times ($n = 144$ for each species). Both species exhibited main effects of temperature and heat time. Exposure to temperatures above 100° for longer than 1 min significantly inhibits germination of both species. Bars are standard error

seedling establishment of *A. altissima* ($P = 0.016$) and *L. maackii* ($P = 0.054$; Fig. 3). The number of seedlings increased in plots with prescribed fire as compared to plots that did not experience fire. Since we used a response variable that accounted for the number of seedlings prior to treatment, the difference in seedlings between years was likely the result of the treatment and not variation in yearly environmental conditions or propagule pressure between treatments within plots.

Discussion

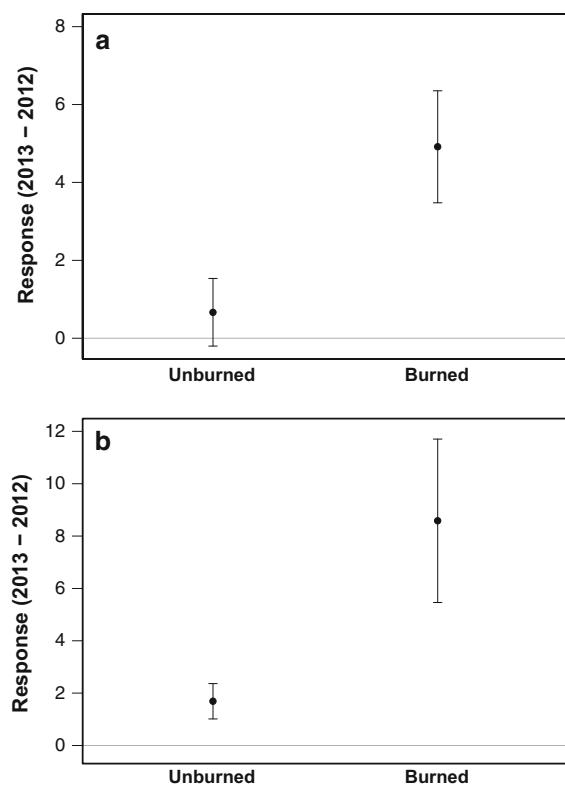

The direct and indirect effects of fire produce different effects on two woody exotic species, *A. altissima* and *L. maackii*, common in unmanaged, mesic, deciduous forests. Neither species demonstrated fire-related germination cues, and the seeds of both exotics are

Fig. 2 Germination of **a** *A. altissima* and **b** *L. maackii* after burial in the field with and without prescribed fire ($n = 18$ for each species). *Ailanthus altissima* exhibited a significant interaction between burial depth and burning (low germination for seeds in the burned and soil surface treatment). *Lonicera maackii* had no significant difference in germination between treatments. Bars are standard error

negatively affected by prolonged exposure to heat (>1 min). Thus, seeds are unlikely to survive in fires when they are located on the soil surface or in a microsite with longer-burning woody debris. Furthermore, the presence of prescribed burns in the field increased seedling recruitment for both species indicating that they benefit from the indirect effects of fire. The combined results from the laboratory and field studies indicate that the indirect effect of fire are more important than the direct effects in governing recruitment of these two species.

Across many ecosystems, including Midwest U.S. prairies and Mediterranean chaparral, researchers have found that plant species of fire-dominated ecosystems

Fig. 3 Survey of **a** *A. altissima* and **b** *L. maackii* seedlings in burned and unburned field plots ($n = 48$ for each species). Response was calculated as the difference in seedling abundance before (2012) and after (2013) burn or no burn treatments. Burning significantly increased seedling recruitment in *A. altissima* plots as compared to unburned plots. There is some evidence that burning also increased seedling recruitment in *L. maackii* plots. Bars are standard error

rely on the direct effects of fire for germination cues (Keeley et al. 2011; Moreira et al. 2010; Vandvik et al. 2014). In contrast to these findings, germination of *A. altissima* and *L. maackii* was inhibited by the application of heat treatments greater than 60 °C for more than 1 min and unaffected by the application of smoke. Although these species likely experienced fires during their evolutionary history (e.g., Stott et al. 1990), our results suggest that they do not have direct, fire-related germination cues like those of other invasive species that have evolved in fire-dominated ecosystems (e.g., Flory et al. 2015). To our knowledge, there are a limited number of studies that examine plant adaptations to the direct effects of fire in Asian ecosystems, and as such research becomes available in the future it will help us to place our results into the larger context of Asian plant

invasions into fire-suppressed North American landscapes.

Seeds experience the greatest direct effects of fire on the soil surface where temperatures and desiccation potential are high (Cheplick and Quinn 1987; Auld and Denham 2006). Several studies have shown that burial, even by a depth of a few centimeters, protects seeds from the most extreme effects of fire (Tozer and Auld 2006). Our results for *A. altissima* show a similar pattern, wherein seeds on the soil surface during a fire had significantly lower germination. In contrast, germination of seeds of *L. maackii* did not significantly differ by burial depth. Fire heterogeneity and associated differences in local fire temperatures and resident times likely explain the large variance, and thus lack of significance, observed between *L. maackii* replicates. Across the landscape, it is likely that some locations experienced hotter fires, while other locations acted as refugia in which the direct effects of fire are less extreme or even absent (Clarke 2002; Schwilk and Keeley 2006; Crandall and Platt 2012).

For fire-adapted plants, the combined direct and indirect effects of fire result in an increase in seedlings post-fire (Keeley and Fotheringham 2000; Måren et al. 2010; Santana et al. 2009). Heat and/or smoke is key to breaking seed dormancy of many species and increasing the number of seedlings (Moreira et al. 2010; Måren et al. 2010; Vandvik et al. 2014). The indirect effects of fire further promote recruitment, with reductions in competition and herbivory contributing to the post-burn flush of seedlings (Tyler 1995; Knight and Holt 2005). In our study, the number of seedlings of both *L. maackii* and *A. altissima* increased after fire as compared to unburned sites. This result exposes an interesting contradiction between our laboratory and field results. Laboratory studies show that these species experience negative direct effects of fire, whereas field studies show that both species benefit from the indirect effects of fire, suggesting the post-fire environment provides strong advantages.

To gain a complete picture of plant responses to prescribed fire, it is important to combine laboratory studies that test for direct effects of fire on germination with field studies that examine seedling recruitment resulting from both direct and indirect effects of fire (see Keeley and Fotheringham 1998). If the heat and smoke from fire increases germination (a direct effect of fire), there will only be an increase in seedling recruitment if the post-fire environment is suitable for

seedling survival. In contrast, the direct effects of fire might increase seed mortality, but if the post-fire environment were suitable as found in our study, there could still be an increase in seedling recruitment resulting from greater seedling survival. Thus, the cumulative effects on germination and seedling recruitment are likely more important than one effect or the other in isolation.

Beneficial, indirect effects of fire on seed and seedling vital rates of rapidly-growing populations of exotic species pose a challenge for restoration of fire-maintained ecosystems. Because *A. ailanthus* and *L. maackii* benefit from a post-fire environment, the use of fire to restore ecosystems invaded by these species should be performed with caution, as both of these invasive species have the potential to respond strongly following fire, and these responses are likely to translate into increases in the growth rate of the population and density of the species. Land managers often reintroduce fires in habitats that are fire suppressed and contain exotic species with the goal of increasing the dominance and diversity of native plant species. However, such restoration will only be successful if native plant species respond more positively to fire and/or if native plant species have a competitive advantage over exotic species in the post-fire environment. Our study thus highlights the need to examine both the direct and indirect effects of fire on both native and invasive species prior to using fire for restoration of degraded ecosystems.

Acknowledgments Funding for this research was provided by the National Science Foundation (DEB Grant No. 1145274). We thank Mike Dyer and the Washington University in St. Louis greenhouse staff for seedling care and staff of the Tyson Research Center for field and logistical assistance. Emily Wen and Eleanor Pearson assisted with establishing fire treatments and collecting data.

References

- Auld TD, Denham AJ (2006) How much seed remains in the soil after a fire? *Plant Ecol* 187:15–24
- Bargmann T, Måren IE, Vandvik V (2014) Life after fire: smoke and ash as germination cues in ericads, herbs and graminoids of northern heathlands. *Appl Veg Sci* 17:670–679
- Boerner RE (2000) Effects of fire on the ecology of the forest floor and soil of central hardwood forests. In: Proceedings of a Conference on Fire, People, and the Central Hardwood Landscape, USDA Forest Service General Technical Report NE 274, pp 56–63

Boerner RE, Brinkman JA, Sutherland EK (2004) Effects of fire at two frequencies on nitrogen transformations and soil chemistry in a nitrogen-enriched forest landscape. *Can J For Res* 34:609–618

Brooks ML, D'Antonio CM, Richardson DM, Grace JB, Keeley JE, DiTomaso JM, Hobbs RJ, Pellatt M, Pyke D (2005) Effects of invasive alien plants on fire regimes. *BioScience* 54:677–688

Brown NAC, van Staden J, Daws MI, Johnson T (2003) Patterns in the seed germination response to smoke in plants from the Cape Floristic Region, South Africa. *S Afr J Bot* 69:514–525

Burns JH, Pardini EA, Schutzenhofer MR, Chung YA, Seidler KJ, Knight TM (2013) Greater sexual reproduction contributes to differences in demography of invasive plants and their noninvasive relatives. *Ecology* 94:995–1004

Cheplick GP, Quinn JA (1987) The role of seed depth, litter, and fire in the seedling establishment of amphicarpic peanut-grass (*Amphicarpum purshii*). *Oecologia* 73:459–464

Clarke PJ (2002) Habitat islands in fire-prone vegetation: do landscape features influence community composition? *J Biogeogr* 29:677–684

Cole KC, Klick KF, Pavlovic NB (1992) Fire temperature monitoring during experimental burns at Indiana Dunes National Lakeshore. *Nat Areas J* 12:177–183

Crandall RM, Platt WJ (2012) Habitat and fire heterogeneity explain the co-occurrence of congeneric resprouter and reseeder *Hypericum* spp. along a Florida pine savanna ecocline. *Plant Ecol* 213:1643–1654

Cushwa CT, Martin ER, Miller RL (1968) The effects of fire on seed germination. *J Range Manag* 21:250–254

Cutter BE, Guyette RP (1994) Fire frequency on an oak-hickory ridgeline in the Missouri Ozarks. *Am Midl Nat* 132:393–398

Dixon KW, Roche S, Pate JS (1995) The promotive effect of smoke derived from burnt native vegetation on seed germination of Western Australian plants. *Oecologia* 101:185–192

Emery SM, Uwimbabzi J, Flory SL (2011) Fire intensity effects on seed germination of native and invasive Eastern deciduous forest understory plants. *For Ecol Manag* 261:1401–1408

Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD (2001) A re-evaluation of cineole as a germination promoter of *Lactuca sativa* L. grand rapids. *Anal Lett* 34:2221–2225

Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD (2004) A compound from smoke that promotes seed germination. *Science* 305:977

Flory SL, Clay K, Emery SM, Robb JR, Winters B (2015) Fire and non-native grass invasion interact to suppress tree regeneration in temperate deciduous forests. *J Appl Ecol* 52:992–1000

Gibson DJ, Hartnett DC, Merrill GL (1990) Fire temperature heterogeneity in contrasting fire-prone habitats: Kansas tallgrass prairie and Florida sandhill. *B Torrey Bot Club* 117:349–356

Hart JL, Buchanan ML (2012) History of fire in eastern oak forests and implications for restoration. In: Proceedings of the 4th fire in eastern oak forests conference. General Technical Report NRS-P-102. USDA Forest Service, Northern Research Station, pp 34–51

Herranz JM, Ferrandis P, Martínez-Sánchez JJ (1998) Influence of heat on seed germination of seven Mediterranean Leguminosae species. *Plant Ecol* 136:95–103

Hodgkinson KC, Oxley RE (1990) Influence of fire and edaphic factors on germination of the arid zone shrubs *Acacia aneura*, *Cassia nemophila* and *Dodonaea viscosa*. *Aust J Bot* 38:269–279

Hu SY (1979) Ailanthus. *Arnoldia* 39:29–50

Ingold JL, Craycraft MJ (1983) Avian frugivory on honeysuckle (*Lonicera*) in southwestern Ohio in fall. *Ohio J Sci* 83:256–258

Jeschke JM, Bacher S, Blackburn TM, Dick JT, Essl F, Evans T, Gaertner M, Hulme PE, Kuhn I, Mrugala A, Pergl J, Pysek P, Rabitsch W, Ricciardi A, Richardson DM, Sendek A, Vila A, Winter M, Kumschick S (2014) Defining the impact of non-native species. *Conserv Biol* 28:1188–1194

Kasson MT, Davis MD, Davis DD (2013) The invasive *Ailanthus altissima* in Pennsylvania: a case study elucidating species introduction, migration, invasion, and growth patterns in the northeastern US. *Northeast Nat* 20:1–60

Keeley JE, Fotheringham CJ (1998) Smoke-induced seed germination in California chaparral. *Ecology* 79:2320–2336

Keeley JE, Fotheringham CJ (2000) Role of fire in regeneration from seed. In: Fenner M (ed) *Seeds: the ecology of regeneration in plant communities*, 2nd edn. CABI, Wallingford, pp 311–330

Keeley JE, Pausas JG, Rundel PW, Bond WJ, Bradstock RA (2011) Fire as an evolutionary pressure shaping plant traits. *Trends Plant Sci* 16:406–411

Knapp LB, Canham CD (2000) Invasion of an old-growth forest in New York by *Ailanthus altissima*: sapling growth and recruitment in canopy gaps. *J Torrey Bot Soc* 127:307–315

Knight TM, Holt RD (2005) Fire generates spatial gradients in herbivory: an example from a Florida sandhill ecosystem. *Ecology* 86:587–593

Lindon HL, Menges E (2008) Effects of smoke on seed germination of twenty species of fire-prone habitats in Florida. *Castanea* 73:106–110

Loucks E, Arthur MA, Lyons JE, Loftis DL (2008) Characterization of fuel before and after a single prescribed fire in an Appalachian hardwood forest. *South J Appl For* 32:80–88

Luken JO, Goessling N (1995) Seedling distribution and potential persistence of the exotic shrub *Lonicera maackii* in fragmented forests. *Am Midl Nat* 133:124–130

Luken JO, Thieret JW (1995) Amur honeysuckle (*Lonicera maackii*; Caprifoliaceae): its ascent, decline, and fall. *SIDA Contrib Bot* 16:479–503

Luken JO, Thieret JW (1996) Amur honeysuckle, its fall from grace. *Bioscience* 46:18–24

Luken JO, Tholemeier TC, Kunkel BA, Kudde LM (1995) Branch architecture plasticity of Amur honeysuckle (*Lonicera maackii* (Rupr.) Herder): initial response in extreme light environments. *B Torrey Bot Club* 122:190–195

MacDougall AS, McCann KS, Gellner G, Turkington R (2013) Diversity loss with persistent human disturbance increases vulnerability to ecosystem collapse. *Nature* 494:86–89

Måren IE, Janovský Z, Spindelböck JP, Daws MI, Kaland PE, Vandvik V (2010) Prescribed burning of northern heathlands: *Calluna vulgaris* germination cues and seed-bank dynamics. *Plant Ecol* 207:245–256

Martin RE, Miller RL, Cushwa CT (1975) Germination response of legume seeds subjected to moist and dry heat. *Ecology* 56:1441–1445

Moreira B, Tormo J, Elstrelles E, Pausas JG (2010) Disentangling the role of heat and smoke as germination cues in Mediterranean Basin flora. *Ann Bot* 105:627–635

Mott JJ, Cook SJ, Williams RJ (1982) Influence of short duration, high temperature seeds treatment on the germination of some tropical and temperate legumes. *Trop Grassl* 16:50–55

Murphy GE, Romanuk TN (2014) A meta-analysis of declines in local species richness from human disturbances. *Ecol Evol* 4:91–103

Nelson DC, Riseborough JA, Flematti GR, Stevens J, Ghisalberti EL, Dixon KW, Smith SM (2009) Karrikins discovered in smoke trigger *Arabidopsis* seed germination by a mechanism requiring gibberellic acid synthesis and light. *Plant Physiol* 149:863–873

Ooi MK, Denham AJ, Santana VM, Auld TD (2014) Temperature thresholds of physically dormant seeds and plant functional responses to fire: variation among species and relative impact of climate change. *Ecol Evol* 45:656–671

Page S, Hosciło A, Wösten H, Jauhainen J, Silvius M, Rieley J, Rizema H, Tansey K, Graham L, Vasander H, Limin S (2009) Restoration ecology of lowland tropical peatlands in Southeast Asia: current knowledge and future research directions. *Ecosystems* 12:888–905

Pardini EA, Vickstrom KE, Knight TM (2015) Early successional microhabitats allow the persistence of endangered plants in coastal sand dunes. *PLoS ONE* 10:e0119567

Parepa M, Fischer M, Bossdorf O (2013) Environmental variability promotes plant invasion. *Nat Commun* 4:1604

Pausas JG, Keeley JE (2014) Evolutionary ecology of resprouting and seeding in fire-prone ecosystems. *New Phytol* 204:55–65

Powell KI, Chase JM, Knight TM (2013) Invasive plants have scale-dependent effects on diversity by altering species-area relationships. *Science* 339:316–318

Pyke DA, Brooks ML, D'Antonio C (2010) Fire as a restoration tool: a decision framework for predicting the control or enhancement of plants using fire. *Restor Ecol* 18:274–284

Ramula S, Knight TM, Burns JH, Buckley YM (2008) General guidelines for invasive plant management based on comparative demography of invasive and native plant populations. *J Appl Ecol* 45:1124–1133

Ryan KC, Knapp EE, Varner JM (2013) Prescribed fire in North American forests and woodlands: history, current practice, and challenges. *Front Ecol Environ* 11:15–24

Santana VM, Baeza JM, Maestre FT (2009) Seedling establishment along post-fire succession in Mediterranean shrublands dominated by obligate seeders. *Acta Oecologica* 39:51–60

Schutzenhofer MR, Valone TJ, Knight TM (2009) Herbivory and population dynamics of invasive and native *Lespedeza*. *Oecologia* 161:57–66

Schwilke DW, Keeley JE (2006) The role of fire refugia in the distribution of *Pinus sabiniana* (Pinaceae) in the southern Sierra Nevada. *Madrono* 53:364–372

Silvertown J, Franco M, Pisanty I, Mendoza A (1993) Comparative plant demography—relative importance of life-cycle components to the finite rate of increase in woody and herbaceous perennials. *J Ecol* 81:465–476

Simberloff D, Martin JL, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp F, Galil B, Garcia-Berthou E, Pascal M, Pysek P, Sousa R, Tabacchi E, Vilà M (2013) Impacts of biological invasions: what's what and the way forward. *Trends Ecol Evol* 28:58–66

Stambaugh MC, Varner JM, Noss RF, Dey DC, Christensen NL, Baldwin RF, Guyette RP, Hanberry BB, Harper CA, Lindblom SG, Waldrop TA (2015) Clarifying the role of fire in the deciduous forests of eastern North America: reply to Matlack. *Conserv Biol* 29:942–946

Stott PA, Goldammer JG, Werner WL (1990) The role of fire in the tropical lowland deciduous forests of Asia. In: Goldammer JG (ed) Fire in the tropical biota. Ecological studies, vol 84. Springer, Berlin, pp 32–44

Sutherland EK (1997) History of fire in a southern Ohio second-growth mixed-oak forest. In: Proceedings, 11th Central Hardwood Conference. St. Paul, MN. General Technical Report NC-188. U.S. Department of Agriculture, Forest Service, North Central Research Station, pp 172–183

R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. <http://www.R-project.org/>

Tozer MG, Auld TD (2006) Soil heating and germination: investigations using leaf scorch on graminoids and experimental seed burial. *Int J Wildland Fire* 15:509–516

Trisel DE, Gorchov DL (1994) Regional distribution, ecological impact, and leaf phenology of the invasive shrub *Lonicera maackii*. *Bull Ecol Soc Am* 75:231–232

Tyler CM (1995) Factors contributing to postfire seedling establishment in chaparral: direct and indirect effects of fire. *J Ecol* 83:1009–1020

Vandvik V, Topper JP, Cook Z, Daws MI, Heegaard E, Maren IE, Velle LG (2014) Management-driven evolution in a domesticated ecosystem. *Biol Lett* 10:1082

Vermeire LT, Rinella MJ (2009) Fire alters emergence of invasive plant species from soil surface-deposited seeds. *Weed Sci* 57:304–310

Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. *Ecol Lett* 14:702–708

Wagner SA, Fraterrigo JM (2015) Positive feedbacks between fire and non-native grass invasion in temperate deciduous forests. *For Ecol Manag* 354:170–176